Permafrost melt and its effects on planetary energy balance

Kaitlin Hill University of Minnesota

SIAM Conference on Dynamical Systems May 22, 2019

Motivation: the role of permafrost in global carbon cycle

(NSIDC)

Motivation: the role of permafrost in global carbon cycle

Major characteristics of permafrost:

- Frozen soil/ice composite
- $\leq 0^{\circ}$ C for at least two years
- Active layer:
 - top portion melting/refreezing
- Maximum depth:
 - 500 m (modern)
 - 1,000 m (paleo)

Motivation: the role of permafrost in global carbon cycle

Permafrost Type

(Schuur et al. 08)

- Budyko's energy balance model for surface temperature
- Linear approximation to changes in permafrost
- Explicit model for heat conduction through soil
- Future work

- Budyko's energy balance model for surface temperature
- Linear approximation to changes in permafrost
- Explicit model for heat conduction through soil
- Future work

- Budyko's energy balance model for surface temperature
- Linear approximation to changes in permafrost
- Explicit model for heat conduction through soil
- Future work

- Budyko's energy balance model for surface temperature
- Linear approximation to changes in permafrost
- Explicit model for heat conduction through soil
- Future work

Model surface energy balance using temperature:

$$\frac{\partial T}{\partial t} =$$
 Energy in - Energy out

Model surface energy balance using temperature:

$$R \frac{\partial T}{\partial t}(y,t) = (1 - \alpha(y,\eta))Qs(y) - (A + BT) - C(T - \overline{T})$$

albedo incoming outgoing heat
solar longwave transport
radiation radiation

y = sin(latitude)

Model surface energy balance using temperature:

$$R \frac{\partial T}{\partial t}(y,t) = (1 - \alpha(y,\eta))Qs(y) - (A + BT) - C(T - \overline{T})$$

albedo incoming outgoing beat
solar longwave transport
radiation radiation

$$\alpha(y,\eta) = \begin{cases} \alpha_1, & y > \eta \text{ [ice]} \\ \alpha_2, & y < \eta \text{ [not ice]} \end{cases}$$

$$s(y) \approx 1 + s_2 (3y^2 + 1)$$

(Budyko 69, North 75)

Model surface energy balance using temperature:

$$R \frac{\partial T}{\partial t}(y,t) = (1 - \alpha(y,\eta))Qs(y) - (A + BT) - C(T - \overline{T})$$

albedo incoming outgoing
solar longwave transport
radiation
$$q(y,\eta) = \begin{cases} \alpha_1, & y > \eta \text{ [ice]} \\ \alpha_2, & y < \eta \text{ [not ice]} \end{cases}$$

$$s(y) \approx 1 + s_2 (3y^2 + 1)$$

$$\overline{T} = \int_0^1 s(y)dy$$

(Budyko 69, North 75)

Steady-state solutions to Budyko's model are given by:

$$T^{*}(y) = \frac{1}{B+C} (Qs(y)(1-\alpha(y)) - A + C\overline{T})$$

=
$$\begin{cases} \frac{1}{B+C} (Qs(y)(1-\alpha_{1}) - A + C\overline{T}), & T > T_{c} \\ \frac{1}{B+C} (Qs(y)(1-\alpha_{2}) - A + C\overline{T}), & T < T_{c} \end{cases}$$

Steady-state solutions to Budyko's model are given by:

$$T^{*}(y) = \frac{1}{B+C} (Qs(y)(1-\alpha(y)) - A + C\overline{T})$$

=
$$\begin{cases} \frac{1}{B+C} (Qs(y)(1-\alpha_{1}) - A + C\overline{T}), & T > T_{c} \\ \frac{1}{B+C} (Qs(y)(1-\alpha_{2}) - A + C\overline{T}), & T < T_{c} \end{cases}$$

Motivating question:

As permafrost melts, how much carbon dioxide and methane is released?

Steady-state solutions to Budyko's model are given by:

$$T^{*}(y) = \frac{1}{B+C} (Qs(y)(1-\alpha(y)) - A + C\overline{T})$$

=
$$\begin{cases} \frac{1}{B+C} (Qs(y)(1-\alpha_{1}) - A + C\overline{T}), & T > T_{c} \\ \frac{1}{B+C} (Qs(y)(1-\alpha_{2}) - A + C\overline{T}), & T < T_{c} \end{cases}$$

Motivating question:

As permafrost melts, how much carbon dioxide and methane is released?

Approximating emissions from permafrost

Pacific Ocean

Rate of change of permafrost line with global mean temperature:

$$T^{*}(p) = \frac{1}{B+C}(Qs(p)(1-\alpha_{1}) - A + C\overline{T})$$

$$\rightarrow \frac{dp}{d\overline{T}} = -\frac{C}{Qs'(p(\overline{T}))(1-\alpha_{1})}$$

$$\xrightarrow{0} \Delta p \approx p'(\overline{T})\Delta\overline{T}$$

$$20$$

$$0$$

$$0$$

$$0$$

$$-10$$

$$-20$$

$$0.7$$

$$0.8$$

$$0.9$$

$$1$$

(Zebrowski and Nguyen, in prep)

Rate of change of permafrost line with global mean temperature:

Rate of change of permafrost line with global mean temperature:

Rate of change of permafrost line with global mean temperature:

Zebrowski and Nguyen predict 309.7 Gt C released using Budyko's model and geometric arguments

Comparison to:

Study	2100	Permafrost car- bon emissions (Gt C)2200	2300	Flux uncer- tainty (%)	Temperature increase (K)2100	Initial carbon stock (Gt C)	Permafrost area loss (%)2100	Scenario
Zhuang et al	37 (46)	na ^c	na	3%	na	na		A2
(2006) Dutta <i>et al</i> (2006)	40 (50)	na	na	na	na	460		5 °C Siberia
Burke et al (2013)	50 (62) ^e	na	99 (124) ^e	41%	na	850	76±20	RCP8.5
Schuur	158	na	345	24%	na	1488	55 + 5 ^a	RCP8.5
et al (2013)	(198)		(432)	2170		1100	0020	ner olo
MacDougall et al (2012)	174 (218)	na	na	61%	0.27 ± 0.16	1026	56±3	RCP8.5
Harden et al (2012)	218 (273) ^e	na	436 (546) ^e	85%	na	1060	74	RCP8.5
Raupach and Canadell (2008) ^d	347 (435)	na	na	na	0.7	500		A2

Table 2. Projections of cumulative emissions from thawing permafrost, with CO₂ equivalents in parentheses^a.

(Schaefer et al 14)

At each latitude, we assume temperature varies by depth via conduction:

At each latitude, we assume temperature varies by depth via conduction:

$$\frac{\partial T_y}{\partial t} = k \frac{\partial^2 T_y}{\partial z^2}, \qquad t \ge 0, \qquad 0 \le z \le L$$

At surface boundary: $T_y(0, t; y) = T(y, t)$

At the lower boundary: $T_y(L, t; y) = M$

An explicit model for permafrost melt

At each latitude, we assume temperature varies by depth via conduction:

$$\frac{\partial T_{y}}{\partial t} = k \frac{\partial^{2} T_{y}}{\partial z^{2}}, \qquad t \ge 0, \qquad 0 \le z \le L$$

At surface boundary: $T_y(0,t;y) = T(y,t)$

At the lower boundary: $T_y(L, t; y) = M$

Initial condition:
$$T_y(z, 0; y) = \frac{M - T(y, 0)}{L}z + T(y, 0)$$

y = sin(latitude)z = soil depth

An explicit model for permafrost melt

In equilibrium,

$$T_y(z) = \frac{M - T(y)}{l}z + T(y)$$

М

 T_c

р 30 In equilibrium, 20 $T [\circ C]$ 10 $T_y(z) = \frac{M - T(y)}{l}z + T(y)$ 0 -10 -20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 yT(y)0 $T_y(z)$ Z

Reality check: how good is the heat equation?

Is it reasonable to model permafrost as heat conduction?

On a decadal timescale, yearly variations may be important:

$$\frac{\partial T_y}{\partial t} = k \frac{\partial^2 T_y}{\partial z^2}, \qquad t \ge 0, \qquad 0 \le z \le L$$

$$T_y(0,t) = T(y,t) \approx (-5 - 20\cos(2\pi t))$$

$$T_y(l,t) = M$$

$$T_y(z,0) = \frac{M - T(y,0)}{l}z + T(y,0)$$
At 60°N

(data: CRU CL v2.0)

The temperature profile has similar characteristics to permafrost:

(Biskaborn et al. 19)

The temperature profile has similar characteristics to permafrost:

With added forcing, we can simulate the permafrost melting:

$$\frac{\partial T_y}{\partial t} = k \frac{\partial^2 T_y}{\partial z^2}, \qquad t \ge 0, \qquad 0 \le z \le L$$
$$T_y(0,t) = T(y,t) + F(t) \approx (-5 - 20\cos(2\pi t)) + \frac{F_{max}t}{t_{max}}$$
$$T_y(L,t) = M$$
$$T_y(z,0) = \frac{M - T(y,0)}{L}z + T(y,0)$$

(k = 700, M = 60, L = 1,000)

With no sinusoidal variation

(T(y, 0) = 15)

(T(y,0)=-2)

With added forcing, we can simulate the permafrost melting:

Since 2014, multiple observations of permafrost craters in Siberia (Yamal Peninsula +)

(Leibman et al 14)

Several studies have followed:

(Kizyakov 17)

Several studies have followed:

Fig. 4. Experimental curves of pressure (P) and temperature (t) changes inside the cell when slow heating of hydrate-containing sample.

(Buldoviz 18)

(Yakushev 18)

Could the heat equation be enough to reproduce this effect?

(Buldoviz 18, Yakushev 18)

Together, the system is given by:

$$R \frac{\partial T}{\partial t} = (1 - \alpha(y, \eta))Qs(y) - (A + BT) + C(\overline{T} - T)$$
$$\frac{\partial T_y}{\partial t} = k \frac{\partial^2 T_y}{\partial z^2}$$

Together, the system is given by:

$$R \frac{\partial T}{\partial t} = (1 - \alpha(y, \eta))Qs(y) - (A + BT) + C(\overline{T} - T)$$
$$\frac{\partial T_y}{\partial t} = k \frac{\partial^2 T_y}{\partial z^2}$$

At each latitude,

- Melting permafrost releases greenhouse gases (CO₂/methane)
- Once all gases from a latitude 'reservoir' are released, stop releasing

Thank you!

In collaboration with:

Richard McGehee

Aileen Zebrowski

John Nguyen

